Canonical Floquet Theory II: Action-Angle Variables Near Conservative Periodic Orbits
Document Type
Article
Publication Date
6-2021
Abstract
Classical Floquet theory describes motion near a periodic orbit. But comparing Floquet theory to action angle methods shows which Jordan form is desirable. A new eigenvector algorithm is developed ensuring a canonical transform and handling the typical for the case of repeated eigenvalues, a chronic problem in conservative Hamiltonian systems. This solution also extends the Floquet decomposition to adjacent trajectories, and is fully canonical. This method yields the matrix of frequency partial derivatives, extending the solution’s validity. Some numerical examples are offered.
DOI
10.1007/s40295-021-00258-z
Source Publication
Journal of the Astronautical Sciences
Recommended Citation
Wiesel, W. E. (2021). Canonical floquet theory II: Action-angle variables near conservative periodic orbits. Journal of the Astronautical Sciences, 68, 391–401. https://doi.org/10.1007/s40295-021-00258-z
Comments
The "Link to Full Text" on this page will open the article hosted at the publisher website.