Document Type
Article
Publication Date
3-27-2012
Abstract
The spatial and spectral resolutions achievable by a prototype rotating prism chromotomosynthetic imaging (CTI) system operating in the visible spectrum are described. The instrument creates hyperspectral imagery by collecting a set of 2D images with each spectrally projected at a different rotation angle of the prism. Mathematical reconstruction techniques that have been well tested in the field of medical physics are used to reconstruct the data to produce the 3D hyperspectral image. The instrument operates with a 100 mm focusing lens in the spectral range of 400–900 nm with a field of view of 71.6 mrad and angular resolution of 0.8–1.6 μrad. The spectral resolution is 0.6 nm at the shortest wavelengths, degrading to over 10 nm at the longest wavelengths. Measurements using a point-like target show that performance is limited by chromatic aberration. The system model is slightly inaccurate due to poor estimation of detector spatial resolution, this is corrected based on results improving model performance. As with traditional dispersion technology, calibration of the transformed wavelength axis is required, though with this technology calibration improves both spectral and spatial resolution. While this prototype does not operate at high speeds, components exist which will allow for CTI systems to generate hyperspectral video imagery at rates greater than 100 Hz.
Source Publication
Review of Scientific Instruments
Recommended Citation
Randall L. Bostick, Glen P. Perram; Spatial and spectral performance of a chromotomosynthetic hyperspectral imaging system. Rev Sci Instrum 1 March 2012; 83 (3): 033110. https://doi.org/10.1063/1.3697720
Comments
© 2012 AIP Publishing LLC, published under an exclusive license with American Institute of Physics.
AFIT Scholar, as the repository of the Air Force Institute of Technology, furnishes the published Version of Record for this article in accordance with the sharing policy of the publisher, AIP Publishing. A 12-month embargo was observed.
This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Review of Scientific Instruments 83, 033110 as fully cited below and may be found at DOI: 10.1063/1.3697720.