Document Type

Article

Publication Date

3-9-2022

Abstract

Radio Frequency Fingerprinting (RFF) is often proposed as an authentication mechanism for wireless device security, but application of existing techniques in multi-channel scenarios is limited because prior models were created and evaluated using bursts from a single frequency channel without considering the effects of multi-channel operation. Our research evaluated the multi-channel performance of four single-channel models with increasing complexity, to include a simple discriminant analysis model and three neural networks. Performance characterization using the multi-class Matthews Correlation Coefficient (MCC) revealed that using frequency channels other than those used to train the models can lead to a deterioration in performance from MCC > 0.9 (excellent) down to MCC < 0.05 (random guess), indicating that single-channel models may not maintain performance across all channels used by the transmitter in realistic operation. We proposed a training data selection technique to create multi-channel models which outperform single-channel models, improving the cross-channel average MCC from 0.657 to 0.957 and achieving frequency channel-agnostic performance. When evaluated in the presence of noise, multi-channel discriminant analysis models showed reduced performance, but multi-channel neural networks maintained or surpassed single-channel neural network model performance, indicating additional robustness of multi-channel neural networks in the presence of noise.

Comments

© 2022 The Authors.

This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

This work appears in volume 22 of Sensors. Special issue title: Radio Frequency Machine Learning (RFML) Applications.

Please fully attribute the citation below in any re-use.

DOI

10.3390/s22062111

Source Publication

Sensors

Share

COinS