10.1364/AO.405277">
 

Implications of Polarized Pupil Degradation Due to Focal Shifts in Dynamically Ranged Rayleigh Beacons

Document Type

Article

Publication Date

1-20-2021

Abstract

A dynamically ranged pulsed Rayleigh beacon using sensed wavefronts across a system’s pupil plane is proposed for tomographic quantification of the atmospheric turbulence strength. This method relies on relaying light from a telescope system’s pupil plane to a wavefront sensor and having precise control of the light-blocking mechanisms to filter out scattered light from the unwanted scattering regions along the propagation path. To accomplish this, we tested and incorporated design features into the sensing system that we believe, to the best of our knowledge, are unique. Dynamically changing the range of the beacon source created focal shifts along the optical axis in the telescope sensing system. This effect induced polarization degradation in the optical pupil. As a result, polarization nonuniformity within the Pockels cell resulted in light leakages that corrupted the sensed data signals. To mitigate this unwanted effect, an analysis of the polarization pupil had to be completed for the range of possible Rayleigh beacon source distances, relating the change in polarization to the ability of a Pockels cell to function as an optical shutter. Based on the resultant polarization pupil analysis, careful design of the light relay architecture of the sensing system was necessary to properly capture sensed wavefront data from a series of intended ranges. Results are presented for the engineering design of the Turbulence and Aerosol Research Dynamic Interrogation System sensing system showing the choices made within the trade space and how those choices were made based on an analysis of the polarization pupil. Based on what we learned, recommendations are made to effectively implement a polarization-based Pockels cell shutter system as part of a dynamically ranged Rayleigh beacon system.

Comments

The "Link to Full Text" on this page opens or saves the published version of the article, as hosted at Optica Publishing Group.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for non-commercial purposes and appropriate attribution is maintained. All other rights are reserved.

Source Publication

Applied Optics

Share

COinS