Document Type
Article
Publication Date
7-2021
Abstract
This paper describes the experimental results for an energy tuning assembly created to modify the National Ignition Facility deuterium–tritium fusion neutron source into a notional thermonuclear and prompt fission neutron spectrum, which has applications in integral measurements, nuclear data benchmarks, and radiation effects on microelectronics. The Monte Carlo neutron transport utilized MCNP5 to estimate the ETA-modified fluence using the ENDF-B/VIII.0 and IRDFF-II continuous energy nuclear data libraries, and SCALE Sampler was used to estimate the systematic nuclear data covariance using ENDF-B/VII.1 and IRDFF-II in a 252-group structure. The experiment fielded eight activation foils and a highly enriched uranium sample. This provided fifteen reaction channels that were used in a forward-fit comparison to the modeled results and to unfold the neutron spectrum using STAYSL. Gamma-ray spectrometry was performed on the activation and highly enriched uranium foils, and the reduced x2 between the modeled and experimental values was 1.21. The results from the STAYSL unfold, reduced x2 = 1.62, indicated that the modeled neutron spectrum was achieved and the systematic nuclear data uncertainty associated with the neutron transport and activation product cross sections was representative of the experiment. Integral cumulative fission product yield data were collected for 37 mass chains with a combination of gamma-ray spectrometry and radiochemical analysis. Fission product analysis was generally in agreement with two models using a semi-empirical fit and the General Observables of Fission code, with the exception of mass chains 88, 109, 111, 112, 113, 129, 139, 142, 144, 151, and 156.
Source Publication
Applied Radiation and Isotopes (ISSN 0969-8043 | e-ISSN 1872-9800)
Recommended Citation
Quartemont, N., Gharibyan, N., Moody, K., & Bevins, J. E. (2021). Uranium integral fission product yields for a spectrally-shaped 14.1 MeV neutron source at the National Ignition Facility. Applied Radiation and Isotopes, 173, 109711. https://doi.org/10.1016/j.apradiso.2021.109711
Comments
Copyright © The Authors
This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Sourced from the published version of record cited below.
Please fully attribute the citation below in any re-use.