Dimensional Reduction Analysis for Constellation-Based DNA Fingerprinting to Improve Industrial IoT Wireless Security
Document Type
Conference Proceeding
Publication Date
1-2019
Abstract
The Industrial Internet of Things (IIoT) market is skyrocketing towards 100 billion deployed devices and cybersecurity remains a top priority. This includes security of ZigBee communication devices that are widely used in industrial control system applications. IIoT device security is addressed using Constellation-Based Distinct Native Attribute (CB-DNA) Fingerprinting to augment conventional bit-level security mechanisms. This work expands upon recent CB-DNA “discovery” activity by identifying reduced dimensional fingerprints that increase the computational efficiency and effectiveness of device discrimination methods. The methods considered include Multiple Discriminant Analysis (MDA) and Random Forest (RndF) classification. RndF deficiencies in classification and post-classification feature selection are highlighted and addressed using a pre-classification feature selection method based on a Wilcoxon Rank Sum (WRS) test. Feature down-selection based on WRS testing proves to very reliable, with reduced feature subsets yielding cross-device discrimination performance consistent with full-dimensional feature sets, while being more computationally efficient.
DOI
10.24251/HICSS.2019.856
Source Publication
Proceedings of the 52nd Hawaii International Conference on System Sciences
Recommended Citation
Rondeau, C. M., Temple, M. A., & Betances, J. A. (2019). Dimensional Reduction Analysis for Constellation-Based DNA Fingerprinting to Improve Industrial IoT Wireless Security. In Proceedings of the 52nd Hawaii International Conference on System Sciences. http://hdl.handle.net/10125/60149
Comments
The "Link to Full Text" on this page will open or save the PDF of the conference paper, hosted at the conference website. This is an Open Access conference paper published and distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License, which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. CC BY-NC-ND 4.0
Please fully attribute as cited below in any re-use.