Document Type


Publication Date



In recent years, real-valued neural networks have demonstrated promising, and often striking, results across a broad range of domains. This has driven a surge of applications utilizing high-dimensional datasets. While many techniques exist to alleviate issues of high-dimensionality, they all induce a cost in terms of network size or computational runtime. This work examines the use of quaternions, a form of hypercomplex numbers, in neural networks. The constructed networks demonstrate the ability of quaternions to encode high-dimensional data in an efficient neural network structure, showing that hypercomplex neural networks reduce the number of total trainable parameters compared to their real-valued equivalents. Finally, this work introduces a novel training algorithm using a meta-heuristic approach that bypasses the need for analytic quaternion loss or activation functions. This algorithm allows for a broader range of activation functions over current quaternion networks and presents a proof-of-concept for future work.


© 2021 The Authors. This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit Sourced from the published version of record cited below.



Source Publication


Included in

Mathematics Commons