Document Type

Article

Publication Date

2021

Abstract

In the future, a hazardous asteroid will find itself on a collision course with Earth. For asteroids of moderate size or larger, a nuclear device is one of humanity's only technologies capable of mitigating this threat via deflection on a timescale of less than a decade. This work examined how the output neutron energy from a nuclear device standoff detonation affects the deflection of a notional asteroid that is 300 meters in diameter and composed of silicon dioxide at a bulk density of 1.855 g/cm3. 14.1 MeV and 1 MeV neutron energy sources were modeled in MCNP to quantify the energy deposition in the asteroid target. The asteroid's irradiated region was discretized in angle by tracing the rays emanating from the point of detonation and in depth by considering the neutron mean-free-paths. This high-fidelity approach was shown to deviate from previous analytic approximations commonly used for asteroid energy deposition. 50 kt and 1 Mt neutron yields of the energy deposition mappings were imported into a hydrodynamic asteroid model in ALE3D to simulate the deflective response due to blow-off ejecta. Underexplored in literature, changing the neutron energy was found to have up to a 70% impact on deflection performance due to induced differences in the energy deposition profile and in the energy coupling efficiency. The magnitude of energy deposition accounted for most of the observed variation in the asteroid velocity change, making the coupling efficiency more significant than the spatial profile characteristics. These findings are vital for determining the optimal source neutron energy spectrum for asteroid deflection applications.

Comments

© 2021 The Author(s).
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Sourced from the published version of record cited below.

Citation note from article: "This publication heavily expands, revises, and improves upon a conference report [1] that was submitted to, and presented in, the 2020 IEEE Aerospace Conference in Big Sky, MT, USA. This journal paper largely supersedes the prior preliminary work from the same authors." DOI of preceding paper: 10.1109/AERO47225.2020.9172255 (subscription access).

DOI

10.1016/j.actaastro.2021.02.028

Source Publication

Acta Astronautica

Share

COinS