Document Type

Article

Publication Date

3-2014

Abstract

Electron paramagnetic resonance (EPR) is used to characterize the 67Zn hyperfine interactions associated with neutral nitrogen acceptors in zinc oxide. Data are obtained from an n-type bulk crystal grown by the seeded chemical vapor transport method. Singly ionized nitrogen acceptors (N) initially present in the crystal are converted to their paramagnetic neutral charge state (N0) during exposure at low temperature to 442 or 633 nm laser light. The EPR signals from these N0 acceptors are best observed near 5 K. Nitrogen substitutes for oxygen ions and has four nearest-neighbor cations. The zinc ion along the [0001] direction is referred to as an axial neighbor and the three equivalent zinc ions in the basal plane are referred to as nonaxial neighbors. For axial neighbors, the 67Zn hyperfine parameters are A = 37.0 MHz and A = 8.4 MHz with the unique direction being [0001]. For nonaxial neighbors, the 67Zn parameters are A1 = 14.5 MHz, A2 = 18.3 MHz, and A3 = 20.5 MHz with A3 along a [10ˉ10] direction (i.e., in the basal plane toward the nitrogen) and A2 along the [0001] direction. These 67Zn results and the related 14N hyperfine parameters provide information about the distribution of unpaired spin density at substitutional neutral nitrogen acceptors in ZnO.

Comments

© 2014 AIP Publishing LLC, published under an exclusive license with American Institute of Physics.

AFIT Scholar, as the repository of the Air Force Institute of Technology, furnishes the published Version of Record for this article in accordance with the sharing policy of the publisher, AIP Publishing. A 12-month embargo was observed.

This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Journal of Applied Physics 115:103703 as fully cited below and may be found at 10.1063/1.4867736.

Plain-text title: Neutral Nitrogen Acceptors in ZnO: The 67Zn Hyperfine Interactions

Source Publication

Journal of Applied Physics

Share

COinS