Document Type
Article
Publication Date
3-2021
Abstract
In this study, the ignition characteristics and the flow properties of the mixed convection flow are presented. Detailed formulations of the forced, natural and mixed convection problems have been discussed. In order to avoid inconvenient switch between the forced and natural convection we introduce a continuous transformation in the mixed convection. We make a comparison between these situations which reveal a good agreement. For mixed convection flow, the ignition distance is explicitly expressed as a function of the Prandtl number, reaction parameter and wall temperature. It has been observed that owing to the increase of the aforesaid parameters, the thermal ignition distance is reduced. Numerical results are illustrated for velocity, temperature, and concentration for different physical parameters. Furthermore, the development of combustion is presented by using streamlines, isotherms and isolines of fuel and oxidizer.
DOI
10.1007/s42452-021-04363-4
Source Publication
SN Applied Sciences
Recommended Citation
Parvin, S., Roy, N.C. & Gorla, R.S.R. Thermal ignition of a combustible over an inclined hot plate. SN Appl. Sci. 3, 352 (2021). https://doi.org/10.1007/s42452-021-04363-4
Comments
© The Authors, 2021.
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.