Document Type


Publication Date



The band structure of germanium changes significantly when alloyed with a few percent concentrations of tin, and while much work has been done to characterize and exploit these changes, the corresponding deep-level defect characteristics are largely unknown. In this paper, we investigate the dominant deep-level defects created by 2 MeV proton irradiation in Ge1 -xSnx (x = 0.0, 0.020, 0.053, 0.069, and 0.094) diodes and determine how the ionization energies of these defects change with tin concentrations. Deep-level transient spectroscopy measurements approximate the ionization energies associated with electron transitions to/from the valence band (hole traps) and conduction band (electron traps) in the intrinsic regions of p-i-n diode test structures. The prominent deep-level hole traps may be associated with divacancies, vacancy-tin complexes, and vacancy-phosphorous complexes (V2, V-Sn, and V-P, respectively), with the presumed V-P hole trap dominating after room temperature annealing. The ionization energy level of this trap (approximated by the apparent activation energy for hole emission) is close to the intrinsic Fermi level in the 0% and 2% Sn devices and decreases as the tin concentration is increased, maintaining an approximately fixed energy spacing below the indirect conduction band edge. The other hole traps follow this same trend, and the dominant electron trap ionization energies remain roughly constant with changes in tin concentrations, indicating they are likewise pinned to the conduction band edge. These results suggest a pattern that may, in many cases, apply more generally to deep-level defects in these alloys, including those present in the "as-grown" materials.


© 2020 Authors(s), published under an exclusive license with American Institute of Physics.

AFIT Scholar, as the repository of the Air Force Institute of Technology, furnishes the published Version of Record for this article in accordance with the sharing policy of the publisher, AIP Publishing. A 12-month embargo was observed.

This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Journal of Applied Physics, 127: 065708 as fully cited below and may be found at DOI: 10.1063/1.5131783.

Plain-text title: Radiation-induced electron and hole traps in Ge1 -x Sn x (x = 0-0.094)

This paper is part of the Special Topic on Defects in Semiconductors 2020.

Funding notes: The authors would like to express their sincere appreciation to Dr. Gernot S. Pomrenke of the Air Force Office of Scientific Research for his support of this work (Nos. 11767875-AFIT and FA9550-17-0314-ASU)



Source Publication

Journal of Applied Physics