Document Type
Article
Publication Date
1-31-2020
Abstract
We present two methods to generate an electromagnetic dark and antidark partially coherent source. The first generalizes a recently published scalar approach by representing the stochastic electric field vector components as sums of randomly weighted, randomly tilted plane waves. The second method expands the field’s vector components in series of randomly weighted dark and antidark coherent modes. The statistical moments of the random weights—plane waves in the former method, coherent modes in the latter—are found by comparing the resulting means and covariances to those of the desired electromagnetic dark and antidark source. We validate both methods by simulating the generation of an electromagnetic dark or antidark source and comparing the simulated results to the corresponding theoretical predictions. We find that both methods converge to the theoretical, ensemble-averaged (long-time-averaged) statistics within roughly 500 random field instances. The methods presented in this paper will find use in applications that utilize dark and antidark beams, e.g. atomic optics and optical trapping. © 2020, Institute of Physics Publishing. All rights reserved.
DOI
10.1088/2399-6528/ab6ed3
Source Publication
Journal of Physics Communications (e-ISSN 2399-6528)
Recommended Citation
Hyde, M. W. (2020). Generating electromagnetic dark and antidark partially coherent sources. Journal of Physics Communications, 4(1), 015025. https://doi.org/10.1088/2399-6528/ab6ed3
Comments
This is an open access article published by The Institute of Physics (IOP) and distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. CC BY 4.0
Sourced from the published version of record cited below.