10.1140/epjb/e2018-80489-x">
 

Electrical and Material Properties of Hydrothermally Grown Single Crystal (111) UO2

Document Type

Article

Publication Date

2018

Abstract

The semiconductor and optical properties of UO2 are investigated. The very long drift carrier lifetimes, obtained from current–voltage I(V) and capacitance–voltage C(V) measurements, along with the well-defined optical properties provide little evidence of an abundance of material defects away from the surface region. Schottky barrier formation may be possible, but very much dependent on the choice of contact and surface stoichiometry and we find that Ohmic contacts are in fact favored. Depth resolved photoemission provided evidence of a chemical shift at the surface. Density functional theory, with the Heyd-Scuseria-Ernzerhof (HSE) functional, indicates a band gap of a 2.19 eV and an anti-ferromagnetic ground state. Ellipsometry measurements indicates at UO2 is relatively isotropic with a band gap of approximately 2.0 eV band gap, consistent with theoretical expectations.

Comments

Copyright statement: © EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2018.

The full-text of this article is available through a subscription or purchase at the SpringerLink portal using the DOI link below.

Source Publication

European Physical Journal B (ISSN 1434-6028 | eISSN 1434-6036)

This document is currently not available here.

Share

COinS