Two-Dimensional Temperature Analysis of Nuclear Fireballs Using Digitized Film
Document Type
Article
Publication Date
1-20-2015
Abstract
Researchers at Lawrence Livermore National Laboratory have begun digitizing technical films spanning the atmospheric nuclear testing operations conducted by the United States from 1945 through 1962. Each atmospheric nuclear test was filmed by Edgerton, Germeshausen, and Grier, Inc., using between 20 to 40 cameras per test. These technical film test data represent a primary source for advancing the knowledge of nuclear weapon output as well as the understanding of nonnuclear high-temperature gases. This manuscript outlines the procedures followed in order to perform two-dimensional temperature calculations for early time nuclear fireballs using digitized film. The digitized optical densities of the film were converted into irradiance on the film that was then used to determine an effective power temperature. The events Wasp Prime and Tesla of Operation Teapot were analyzed using this technique. Film temperature results agreed within uncertainties with historic data collected by calorimeters. Results were also validated by comparison to a thermal heat flux solution that utilizes historic thermal yield values to normalize radiant flux. Additionally, digital imaging and remote sensing image generation was used to demonstrate that the two-dimensional temperature calculation was self-consistent.
DOI
10.1117/1.JRS.9.095096
Source Publication
Journal of Applied Remote Sensing
Recommended Citation
Robert C. Slaughter, Tyler R. Peery, and John W. McClory "Two-dimensional temperature analysis of nuclear fireballs using digitized film," Journal of Applied Remote Sensing 9(1), 095096 (20 January 2015). https://doi.org/10.1117/1.JRS.9.095096
Comments
© The Authors. This is an open access article published by SPIE under a Creative Commons Attribution 4.0 Unported License (CC BY 4.0). Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
The "Link to Full Text" opens the full text of the article (HTML) at the publisher website. A PDF of the article is also available at that page.