Guaranteeing Convergence of Iterative Skewed Voting Algorithms for Image Segmentation
Document Type
Article
Publication Date
9-2012
Abstract
In this paper we provide rigorous proof for the convergence of an iterative voting-based image segmentation algorithm called Active Masks. Active Masks (AM) was proposed to solve the challenging task of delineating punctate patterns of cells from fluorescence microscope images. Each iteration of AM consists of a linear convolution composed with a nonlinear thresholding; what makes this process special in our case is the presence of additive terms whose role is to "skew" the voting when prior information is available. In real-world implementation, the AM algorithm always converges to a fixed point. We study the behavior of AM rigorously and present a proof of this convergence. The key idea is to formulate AM as a generalized (parallel) majority cellular automaton, adapting proof techniques from discrete dynamical systems.
DOI
10.1016/j.acha.2012.03.008
Source Publication
Applied and Computational Harmonic Analysis
Recommended Citation
Balcan, D. C., Srinivasa, G., Fickus, M., & Kovačević, J. (2012). Guaranteeing convergence of iterative skewed voting algorithms for image segmentation. Applied and Computational Harmonic Analysis, 33(2), 300–308.
Comments
The "Link to Full Text" button on this page loads the open access article version of record, hosted at Elsevier. The publisher retains permissions to re-use and distribute this article.
Reviewed at MR2927463
Previous version (Pre-print): arXiv:1102.2615 [math.FA].