Document Type

Article

Publication Date

11-2-2015

Abstract

A popular class of BRDF models is the microfacet models, where geometric optics is assumed. In contrast, more complex physical optics models may more accurately predict the BRDF, but the calculation is more resource intensive. These seemingly disparate approaches are compared in detail for the rough and smooth surface approximations of the modified Beckmann-Kirchhoff BRDF model, assuming Gaussian surface statistics. An approximation relating standard Fresnel reflection with the semi-rough surface polarization term, Q, is presented for unpolarized light. For rough surfaces, the angular dependence of direction cosine space is shown to be identical to the angular dependence in the microfacet distribution function. For polished surfaces, the same comparison shows a breakdown in the microfacet models. Similarities and differences between microfacet BRDF models and the modified Beckmann-Kirchhoff model are identified. The rationale for the original Beckmann-Kirchhoff F2bk geometric term relative to both microfacet models and generalized Harvey-Shack model is presented. A modification to the geometric F2bk term in original Beckmann-Kirchhoff BRDF theory is proposed.

Comments

Posted on AFIT Scholar in accordance with Gold Open Access Policy Statement for Optics Express, found at: https://www.osapublishing.org/submit/review/open-access-policy-statement.cfm. A 12-month embargo was observed for this posting.

Sourced from the publisher version of record, cited below with DOI link.

DOI

10.1364/OE.23.029100

Source Publication

Optics Express

Included in

Optics Commons

Share

COinS