10.1117/1.OE.64.9.092204">
 

Application of Synthetically Trained Three-dimensional U-Net to the Detection of Moving Subpixel Objects

Document Type

Article

Publication Date

5-23-2025

Abstract

Hybrid Monte Carlo and molecular dynamics simulations were used to investigate the interaction of light interstitials in multi-element Ni-based alloys. We show that light interstitials such as boron and oxygen fundamentally alter interfacial chemistry by reshaping alloy-element distribution and segregation. Oxygen adsorption drove boron migration from the grain boundary to the free surface, where it co-enriched with Cr, Fe, and Mo and formed BO3 trigonal motifs embedded within mixed-metal oxide networks. Oxygen also promoted M-O-M chain formation, including Nb2O5 clusters at the free surface. In the absence of oxygen, boron segregated to the grain boundary, altering local metal chemistry and underscoring a dynamic, environment-sensitive behavior. Following chlorine exposure, the oxidized surfaces retained strong O-mediated connectivity while forming new Cl-M associations, particularly with Nb and Cr, and exhibited further surface enrichment in Cr, Fe, and Mo. High-temperature MD simulations revealed a dynamic tug-of-war: chlorine exerted upward pull and disrupted weakly anchored sites, while Nb- and BO3-rich oxide motifs resisted deformation. A new stabilization mechanism was identified in which subsurface boron atoms anchored overlying Cr centers, suppressing their mobility and mitigating chlorine-driven displacement. These results demonstrate boron's dual role as a modifier of alloy-element segregation and a stabilizer of oxide networks, and identify Nb as a key element in reinforcing cohesion under halogen attack. More broadly, this study highlights the need to track light interstitial cross-talk and solute migration under reactive conditions, offering atomistic criteria for designing corrosion-resistant surface chemistries in Ni-based superalloys exposed to halogenated or oxidative environments.

Comments

The "Link to Full Text" on this page opens or downloads the full article at the publisher, SPIE.

This article may have a limited time access period mandated by the publisher or research funding body.

Co-author K. Eismann was an AFIT PhD student at the time of this article.

Source Publication

Optical Engineering (ISSN 0091-3286 | eISSN 1560-2303)

Share

COinS