"Detection and Classification of Sporadic E Using Convolutional Neural " by J. A. Ellis, Daniel J. Emmons et al. 10.1029/2023SW003669">
 

Document Type

Article

Publication Date

1-12-2024

Abstract

In this work, convolutional neural networks (CNN) are developed to detect and characterize sporadic E (Es), demonstrating an improvement over current methods. This includes a binary classification model to determine if Es is present, followed by a regression model to estimate the Es ordinary mode critical frequency (foEs), a proxy for the intensity, along with the height at which the Es layer occurs (hEs). Signal-to-noise ratio (SNR) and excess phase profiles from six Global Navigation Satellite System (GNSS) radio occultation (RO) missions during the years 2008–2022 are used as the inputs of the model. Intensity (foEs) and the height (hEs) values are obtained from the global network of ground-based Digisonde ionosondes and are used as the “ground truth,” or target variables, during training. After corresponding the two data sets, a total of 36,521 samples are available for training and testing the models. The foEs CNN binary classification model achieved an accuracy of 74% and F1-score of 0.70. Mean absolute errors (MAE) of 0.63 MHz and 5.81 km along with root-mean squared errors (RMSE) of 0.95 MHz and 7.89 km were attained for estimating foEs and hEs, respectively, when it was known that Es was present. When combining the classification and regression models together for use in practical applications where it is unknown if Es is present, an foEs MAE and RMSE of 0.97 and 1.65 MHz, respectively, were realized. We implemented three other techniques for sporadic E characterization, and found that the CNN model appears to perform better.

Comments

© 2023 The Authors.

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License, which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed. CC BY-NC 4.0

Sourced from the published version of record cited on this page. This article is shared on AFIT Scholar as the repository of the employer of co-author Daniel Emmons.

The DOI link below opens the HTML version as hosted at the publisher.

Source Publication

Space Weather (eISSN 1542-7390)

Share

COinS