10.1364/OME.511348">
 

Document Type

Article

Publication Date

2-2024

Abstract

CdSiP2 crystals are used in optical parametric oscillators to produce tunable output in the mid-infrared. As expected, the performance of the OPOs is adversely affected by residual optical absorption from native defects that are unintentionally present in the crystals. Electron paramagnetic resonance (EPR) identifies these native defects. Singly ionized silicon vacancies (V-Si) are responsible for broad optical absorption bands peaking near 800, 1033, and 1907 nm. A fourth absorption band, peaking near 630 nm, does not involve silicon vacancies. Exposure to 1064 nm light when the temperature of the CdSiP2 crystal is near 80K converts V-Si acceptors to their neutral and doubly ionized charge states (V0-Si and V2-Si , respectively) and greatly reduces the intensities of the three absorption bands. Subsequent warming to room temperature restores the singly ionized charge state of the silicon vacancies and brings back the absorption bands. Transitions responsible for the absorption bands are identified, and a mechanism that allows 1064 nm light to remove the singly ionized charge state of the silicon vacancies is proposed.

Comments

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement.  

Authors and readers may use, reuse, and build upon the article, or use it for text or data mining without asking prior permission from the publisher or the Author(s), as long as the purpose is non-commercial and appropriate attribution is maintained. All other rights are reserved.

Funding Note: National Research Council (NRC)

Sourced from the version of record as cited below and linked in the DOI.

Authors Gustafson and Halliburton co-affiliated with Azimuth Corporation, Beavercreek, Ohio.

Source Publication

Optical Materials Express

Share

COinS