Document Type
Conference Proceeding
Publication Date
6-2018
Abstract
In this work we test experimental photovoltaic, storage and generator technologies and investigate their potential to meet austere location energy needs. After defining the energy requirements and insolation of a 1,100-person base, we develop a microgrid model and simulation. Cost optimizations were then performed using hourly time-series data to explore the cost and performance trade-space of a PV-battery-generator system. The work highlights the cost of resiliency and the dependencies of optimum system component sizes on duration and the fully burdened cost of fuel.
Source Publication
2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)
Recommended Citation
T. Wagner, E. Lang, W. Assink and D. Dudis, "Photovoltaic System Optimization for an Austere Location Using Time Series Data," 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), Waikoloa, HI, USA, 2018, pp. 1239-1243, doi: 10.1109/PVSC.2018.8548145.
Comments
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
AFIT Scholar furnishes the accepted version of this conference paper. The published version of record is available from IEEE via subscription at the DOI link in the citation below.
Funding note: This material is based partially upon work supported by the United States Air Force under award number GS05T13BMD0001