Component Assessment of the Electric Transmission Grid to Hurricanes
Document Type
Article
Publication Date
11-2023
Abstract
The increased frequency and intensity of extreme weather events from climate change necessitates understanding impacts on critical infrastructure, particularly electrical transmission grids. One of the foundational concepts of a grid's resilience is its robustness to extreme weather events, such as hurricanes. Resilience of the electric grid to high wind speeds is predicated upon the location and physical characteristics of the system components. Previous modeling assessments of electric grid failure were done at the systems level with assumptions on location and type of specific components. To facilitate more explicit adaptation metrics, accurate component-level information is needed. In this study, we build and utilize a data set of location, physical characteristics, and age of transmission structures for nine counties in the Florida Panhandle. These component characteristics were then simulated for failure under a variety of scenarios using fragility curves. Eight hurricanes were modeled using Hazus from the Federal Emergency Management Administration and the resulting impact to the network was assessed. The network was generated using the transmission lines and towers, showing increasing impacts to network efficiency with larger storms. Although modern transmission structures are built under the more stringent extreme wind loading construction standards, the prevalence of older, wooden transmission structures throughout the region poses a substantial risk to reliable electricity transmission during tropical cyclone events from the Gulf of Mexico.
Source Publication
Earth's Future
Recommended Citation
Schumann, Z. D., & Chini, C. M. (2023). Component Assessment of the Electric Transmission Grid to Hurricanes. Earth’s Future, 11(11), e2023EF003525. https://doi.org/10.1029/2023EF003525
Comments
The "Link to Full Text" on this page opens the article at the publisher website.
This is an Open Access article published by the American Geophysical Union and distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License, which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. CC BY-NC-ND 4.0