Epistemic Modeling Uncertainty of Rapid Neural Network Ensembles for Adaptive Learning
Document Type
Article
Publication Date
1-2024
Abstract
Emulator embedded neural networks, which are a type of physics informed neural network, leverage multi-fidelity data sources for efficient design exploration of aerospace engineering systems. Multiple realizations of the neural network models are trained with different random initializations. The ensemble of model realizations is used to assess epistemic modeling uncertainty caused due to lack of training samples. This uncertainty estimation is crucial information for successful goal-oriented adaptive learning in an aerospace system design exploration. However, the costs of training the ensemble models often become prohibitive and pose a computational challenge, especially when the models are not trained in parallel during adaptive learning. In this work, a new type of emulator embedded neural network is presented using the rapid neural network paradigm. Unlike the conventional neural network training that optimizes the weights and biases of all the network layers by using gradient-based backpropagation, rapid neural network training adjusts only the last layer connection weights by applying a linear regression technique. It is found that the proposed emulator embedded neural network trains near-instantaneously, typically without loss of prediction accuracy. The proposed method is demonstrated on multiple analytical examples, as well as an aerospace flight parameter study of a generic hypersonic vehicle.
Source Publication
Finite Elements in Analysis and Design
Recommended Citation
Beachy, A., Bae, H., Camberos, J. A., & Grandhi, R. V. (2024). Epistemic modeling uncertainty of rapid neural network ensembles for adaptive learning. Finite Elements in Analysis and Design, 228, 104064. https://doi.org/10.1016/j.finel.2023.104064
Comments
©2023 Elsevier B.V., all rights reserved.
The "Link to Full Text" on this page opens the full article, free to read and download from Elsevier.
A manuscript version of the article is available from the arXiv e-print repository, at arxiv:2309.06628 [cs.LG].