10.33012/navi.563">
 

Document Type

Article

Publication Date

Fall 2023

Abstract

To understand the error sources present in inertial sensors, both the white (time-invariant) and correlated noise sources must be properly characterized. To understand both sources, the standard approach (IEEE standards 647-2006, 952-2020) is to compute the Allan variance of the noise and then use human-based interpretation of linear trends to estimate the separate noise sources present in a sensor. Recent work has sought to overcome the graphical nature and visual-inspection basis of this approach leading to more accurate noise estimates. However, when using noise characterization in a filter, it is important that the noise estimates be not only accurate but also conservative, i.e., that the estimated noise parameters overbound truth. In this paper, we propose a novel method for automatically estimating conservative noise parameters using the Allan variance. Results of using this method to characterize a low-cost MEMS IMU (Analog Devices ADIS16470) are presented, demonstrating the efficacy of the proposed approach.

Comments

This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Source Publication

NAVIGATION: Journal of the Institute of Navigation

Share

COinS