Document Type
Article
Publication Date
11-25-2019
Abstract
Optically pumped rare gas laser performance is analyzed as a function of the Ar(3p54p; 2p) + M → Ar(3p54s; 1s) + M branching ratios. Due to the uncertainty in the branching ratios, a sensitivity study is performed to determine the effect on output and absorbed pump laser intensities. The analysis is performed using a radio frequency dielectric barrier discharge as the source of metastable production for a variety of Argon in Helium mixtures over pressures ranging from 200 to 500 Torr. Peak output laser intensities show a factor of 7 increase as the branching ratio is increased from 0.25 to 1.00. The collection of Ar* in Ar(1s4) is inversely proportional to the branching ratio and decreases output laser intensity by reducing the density of species directly involved with lasing.
Source Publication
Optics Express
Recommended Citation
D. Emmons and D. Weeks, "Effect of Ar(3p54p; 2p)+M → Ar(3p54s; 1s)+M branching ratio on optically pumped rare gas laser performance," Opt. Express 27, 35689-35699 (2019).
Comments
© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement, and shared on AFIT Scholar in accordance with OSA's open access policies. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for non-commercial purposes and appropriate attribution is maintained. All other rights are reserved.
Sourced from the version of record as cited below and linked in the DOI.