Document Type
Article
Publication Date
8-24-2017
Abstract
High-spatial-frequency optical fields or sources are often encountered when simulating directed energy, active imaging, or remote sensing systems and scenarios. These spatially broadband fields are a challenge in wave optics simulations because the sampling required to represent and then propagate these fields without aliasing is often impractical. To address this, two spatial filtering techniques are presented. The first, called Fresnel spatial filtering, finds a spatially band-limited source that, after propagation, produces the exact observation plane field as the broadband source over a user-specified region of interest. The second, called statistical or quasihomogeneous spatial filtering, finds a spatially band-limited source that, after propagation and over a specified region of interest, yields an observation plane field that is statistically representative of that produced by the original broadband source. The pros and cons of both approaches are discussed in detail. A wave optics simulation of light transiting a ground glass diffuser and then propagating to an observation plane in the near-zone is performed to validate the two filtering approaches.
DOI
10.1117/1.OE.56.8.083107
Source Publication
Optical Engineering
Recommended Citation
M. W. Hyde and S. R. Bose-Pillai, “Fresnel spatial filtering of quasihomogeneous sources for wave optics simulations,” Opt. Eng. 56(8), 83107, SPIE (2017) [doi:10.1117/1.OE.56.8.083107]. https://doi.org/10.1117/1.OE.56.8.083107
Comments
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. CC BY 3.0
Sourced from the published version of record cited below.