Document Type

Article

Publication Date

2-2023

Abstract

Positron annihilation lifetime spectroscopy (PALS) has been used for the first time to investigate the microstructure of additively manufactured molybdenum. Despite the wide applicability of positron annihilation spectroscopy techniques to the defect analysis of metals, they have only been used sparingly to monitor the microstructural evolution of additively manufactured metals. Molybdenum and molybdenum with a dilute addition (0.1 wt%) of nano-sized silicon carbide, prepared via laser powder bed fusion (LPBF) at four different scan speeds: 100, 200, 400, and 800 mm/s, were studied by PALS and compared with electron backscatter diffraction analysis. The aim of this study was to clarify the extent to which PALS can be used to identify microstructural changes resulting from varying LPBF process parameters. Grain sizes and misorientation results do not correlate with positron lifetimes indicating the positrons are sampling regions within the grains. Positron annihilation spectroscopy identified the presence of dislocations and nano-voids not revealed through electron microscopy techniques and correlated with the findings of SiO2 nanoparticles in the samples prepared with silicon carbide. The comparison of results indicates the usefulness of positron techniques to characterize nano-structure in additively manufactured metals due to the significant increase in atomic-level information.

Comments

© 2023 by the authors. Licensee MDPI, Basel, Switzerland.

This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Please fully attribute the citation below, including DOI in any re-use.

DOI

10.3390/ma16041636

Source Publication

Materials

Share

COinS