Document Type


Publication Date



This paper presents a stochastic imputation approach for large datasets using a correlation selection methodology when preferred commercial packages struggle to iterate due to numerical problems. A variable range-based guard rail modification is proposed that benefits the convergence rate of data elements while simultaneously providing increased confidence in the plausibility of the imputations. A large country conflict dataset motivates the search to impute missing values well over a common threshold of 20% missingness. The Multicollinearity Applied Stepwise Stochastic imputation methodology (MASS-impute) capitalizes on correlation between variables within the dataset and uses model residuals to estimate unknown values. Examination of the methodology provides insight toward choosing linear or nonlinear modeling terms. Tailorable tolerances exploit residual information to fit each data element. The methodology evaluation includes observing computation time, model fit, and the comparison of known values to replaced values created through imputation. Overall, the methodology provides useable and defendable results in imputing missing elements of a country conflict dataset.


This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit



Source Publication

Journal of Big Data