10.1063/5.0080502">
 

Document Type

Article

Publication Date

2-2022

Abstract

Electron paramagnetic resonance (EPR) and optical absorption are used to characterize Cu2+ (3d9) and Cu3+ (3d8) ions in Cu-doped β-Ga2O3. These Cu ions are singly ionized acceptors and neutral acceptors, respectively (in semiconductor notation, they are Cu and Cu0 acceptors). Two distinct Cu2+ EPR spectra are observed in the as-grown crystals. We refer to them as Cu2+(A) and Cu2+(B). Spin-Hamiltonian parameters (a g matrix and a 63,65Cu hyperfine matrix) are obtained from the angular dependence of each spectrum. Additional electron-nuclear double resonance (ENDOR) experiments on Cu2+(A) ions give refined 63Cu and 65Cu hyperfine matrices and provide information about the nuclear electric quadrupole interactions. Our EPR results show that the Cu2+(A) ions occupy octahedral Ga sites with no nearby defect. The Cu2+(B) ions, also at octahedral Ga sites, have an adjacent defect, possibly an OH ion, an oxygen vacancy, or an H ion trapped within an oxygen vacancy. Exposing the crystals at room temperature to 275 nm light produces Cu3+ ions and reduces the number of Cu2+(A) and Cu2+(B) ions. The Cu3+ ions have an S = 1 EPR spectrum and are responsible for broad optical absorption bands peaking near 365, 422, 486, 599, and 696 nm. An analysis of loops observed in the Cu3+ EPR angular dependence gives 2.086 for the g value and 22.18, 3.31, and −25.49 GHz for the principal values of D (the fine-structure matrix). Thermal anneal studies above room temperature show that the Cu3+ ions decay and the Cu2+ ions recover between 75 and 375 °C.

Comments

© 2020 Authors(s), published under an exclusive license with American Institute of Physics.

AFIT Scholar, as the repository of the Air Force Institute of Technology, furnishes the published Version of Record for this article in accordance with the sharing policy of the publisher, AIP Publishing. A 12-month embargo was observed.

This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This published article appeared in volume 131 of Journal of Applied Physics as cited and linked below.

Plain-text title form: Cu 2+ and Cu 3+ Acceptors in β-Ga 2 O 3 Crystals: A Magnetic Resonance and Optical Absorption Study

[*] Author note: Brian Holloway was an AFIT PhD candidate at the time of publication.

Source Publication

Journal of Applied Physics (ISSN 0021-8979 | e-ISSN 1089-7550)

Previous Versions

Accepted manuscript posted here Feb 21 to Jul 13 2023 (withdrawn)

Share

COinS