Date of Award
12-1996
Document Type
Thesis
Degree Name
Master of Science
Department
Department of Electrical and Computer Engineering
First Advisor
Sheila B. Banks, PhD
Abstract
Problems can arise whenever inferencing is attempted on a knowledge base that is incomplete. Our work shows that data mining techniques can be applied to fill in incomplete areas in Bayesian Knowledge Bases (BKBs), as well as in other knowledge-based systems utilizing probabilistic representations. The problem of inconsistency in BKBs has been addressed in previous work, where reinforcement learning techniques from neural networks were applied. However, the issue of automatically solving incompleteness in BKBs has yet to be addressed. Presently, incompleteness in BKBs is repaired through the application of traditional knowledge acquisition techniques. We show how association rules can be extracted from databases in order to replace excluded information and express missing relationships. A methodology for incorporating those results while maintaining a consistent knowledge base is also included.
AFIT Designator
AFIT-GCS-ENG-96D-25
DTIC Accession Number
ADA322880
Recommended Citation
Stein, Daniel J. III, "Utilizing Data and Knowledge Mining for Probabilistic Knowledge Bases" (1996). Theses and Dissertations. 5881.
https://scholar.afit.edu/etd/5881