Date of Award
3-2020
Document Type
Thesis
Degree Name
Master of Science in Computer Engineering
Department
Department of Electrical and Computer Engineering
First Advisor
Robert C. Leishman, PhD
Abstract
In situations where global positioning systems are unavailable, alternative methods of localization must be implemented. A potential step to achieving this is semantic segmentation, or the ability for a model to output class labels by pixel. This research aims to utilize datasets of varying spatial resolutions and locations to train a fully convolutional neural network architecture called the U-Net to perform segmentations of aerial images. Variations of the U-Net architecture are implemented and compared to other existing models in order to determine the best in detecting buildings and roads. A final dataset will also be created combining two datasets to determine the ability of the U-Net to segment classes regardless of location. The final segmentation results will demonstrate the overall efficacy of semantic segmentation for different datasets for potential localization applications.
AFIT Designator
AFIT-ENG-MS-20-M-075
DTIC Accession Number
AD1104208
Recommended Citation
Yi, Terence J., "Semantic Segmentation of Aerial Imagery using U-Nets" (2020). Theses and Dissertations. 3593.
https://scholar.afit.edu/etd/3593
Included in
Digital Communications and Networking Commons, Navigation, Guidance, Control and Dynamics Commons