Date of Award
3-26-2020
Document Type
Thesis
Degree Name
Master of Science in Operations Research
Department
Department of Operational Sciences
First Advisor
Jeffery D. Weir, PhD
Abstract
The importance and value of statistical predictions increase as data grows in availability and quantity. Metamodels, or surrogate models, provide the ability to rapidly approximate and predict information. However, selection of the appropriate metamodel for a given dataset is often arduous, and the choice of the wrong metamodel could lead to considerably inaccurate results. This research proposes and tests the framework for a metamodel recommendation system. The implementation allows for virtually any dataset and preprocesses data, calculates meta-features, evaluates the performance of various metamodels, and learns how the data behaves via meta-learning, thus preparing and bettering itself for future recommendations. Testing on over 500 widely varied datasets, the framework provides positive results, often recommending a metamodel with similar performance as the actual best metamodel.
AFIT Designator
AFIT-ENS-MS-20-M-182
DTIC Accession Number
AD1101498
Recommended Citation
Woods, Megan K., "A Metamodel Recommendation System Using Meta-learning" (2020). Theses and Dissertations. 3204.
https://scholar.afit.edu/etd/3204