Date of Award
9-2007
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Department of Aeronautics and Astronautics
First Advisor
Richard G. Cobb, PhD
Abstract
To support the Global Strike mission, an autonomous trajectory optimization technique is presented to minimize the flight time, satisfy terminal and intermediate constraints, and remain within the specified vehicle heating and control limitations. "Waypoints" are specified for reconnaissance or multiple payload deployments and "no-fly zones" are specified for geopolitical restrictions or threat avoidance. The Hypersonic Cruise Vehicle (HCV) is used as a simplified two-dimensional platform to compare multiple solution techniques. The solution techniques include a unique geometric approach, an analytical dynamic optimization technique, and a numerical approach. This numerical technique is a direct solution method involving pseudospectral methods and nonlinear programming to converge to the optimal solution. The Common Aero Vehicle (CAV) is used as the test platform for the full three-dimensional reentry trajectory optimization problem. The culmination of this research is the verification of the optimality of this proposed numerical technique, as shown for both the two-dimensional and three-dimensional models. Lastly, user implementation strategies are presented to improve accuracy and enhance solution convergence.
AFIT Designator
AFIT-DS-ENY-07-04
DTIC Accession Number
ADA472301
Recommended Citation
Jorris, Timothy R., "Common Aero Vehicle Autonomous Reentry Trajectory Optimization Satisfying Waypoint and No-Fly Zone Constraints" (2007). Theses and Dissertations. 2904.
https://scholar.afit.edu/etd/2904