Document Type


Publication Date



Atmospheric turbulence is an inevitable source of wavefront distortion in all fields of long range laser propagation and sensing. However, the distorting effects of turbulence can be corrected using wavefront sensors contained in adaptive optics systems. Such systems also provide deeper insight into surface layer turbulence, which is not well understood. A unique method of profile generation by a dual source Hartmann Turbulence Sensor (HTS) technique is introduced here. Measurements of optical turbulence along a horizontal path were taken to create C2n profiles. Two helium-neon laser beams were directed over an inhomogeneous horizontal path and captured by the HTS. The measured differential tilt variances imposed on the laser wavefronts were used in conjunction with a set of computed weighting functions to profile the turbulence over the sensing path. The weighting function matrix is inherently ill-conditioned, therefore, Tikhonov regularization was applied to produce accurate C2n profiles. A distribution of sonic anemometers and a co-located boundary layer scintillometer (BLS) collected independent C2n measurements to add confidence to the HTS profiles. The C2n profiles generated by this approach agree very well with the auxiliary anemometer and scintillometer measurements. This method of producing turbulence profiles may be useful in future multi-conjugate adaptive optics applications.


Copyright statement:© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Please fully attribute the citation below, including DOI in any re-use.



Source Publication

Applied Sciences