Document Type

Article

Publication Date

2021

Abstract

Database queries are one of the most important functions of a relational database. Users are interested in viewing a variety of data representations, and this may vary based on database purpose and the nature of the stored data. The Air Force Institute of Technology has approximately 100 data logs which will be converted to the standardized Scorpion Data Model format. A relational database is designed to house this data and its associated sensor and non-sensor metadata. Deterministic polynomial-time queries were used to test the performance of this schema against two other schemas, with databases of 100 and 1000 logs of repeated data and randomized metadata. Of these approaches, the one that had the best performance was chosen as AFIT’s database solution, and now more complex and useful queries need to be developed to enable filter research. To this end, consider the combined Multi-Objective Knapsack/Set Covering Database Query. Algorithms which address The Set Covering Problem or Knapsack Problem could be used individually to achieve useful results, but together they could offer additional power to a potential user. This paper explores the NP-Hard problem domain of the Multi-Objective KP/SCP, proposes Genetic and Hill Climber algorithms, implements these algorithms using Java, populates their data structures using SQL queries from two test databases, and finally compares how these algorithms perform.

Comments

© 2021, The Author(s).
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Sourced from the published version of record cited below.

DOI

10.1186/s40537-021-00433-x

Source Publication

Journal of Big Data

Included in

Data Science Commons

Share

COinS