Comprehensive optical strain sensing through the use of colloidal quantum dots

Document Type


Publication Date



The adaptation of colloidal quantum dots loaded within a polymer for use in nondestructive testing can be used as an optical strain gauge due to the nanomaterial’s strain sensing properties. In this paper, we utilized InP/ZnS colloidal quantum dots loaded within a polymer matrix applied onto the surface of a dog-bone foil pre-coated with an epoxy. By employing an empirical formula and a calibration factor, there is a propinquity between both the calculated optical strain and mechanical stress-strain reference data. Fluctuations are observed which may be due to both additional strain responses not seen by the mechanical data and quantum dot blinking. These results and methods show applied use of this novel optical non-destructive testing technique for a variety of structures, especially for structures which operate in harsh environments.


This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. For more information on the license, click here.



Source Publication

ACS Applied Materials and Interfaces