Wave-optics Investigation of Turbulence Thermal Blooming Interaction: II. Using Time-dependent Simulations

Mark F. Spencer

This is an open access article published by and distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. CC BY 4.0

Sourced from the published version of record cited below.

Abstract

Part II of this two-part paper uses wave-optics simulations to look at the Monte Carlo averages associated with turbulence and time-dependent thermal blooming (TDTB). The goal is to investigate turbulence thermal blooming interaction (TTBI). At wavelengths near 1 μm, TTBI increases the amount of constructive and destructive interference (i.e., scintillation) that results from high-power laser beam propagation through distributed-volume atmospheric aberrations. As a result, we use the spherical-wave Rytov number, the number of wind-clearing periods, and the distortion number to gauge the strength of the simulated turbulence and TDTB. These parameters simply greatly given propagation paths with constant atmospheric conditions. In addition, we use the log-amplitude variance and the branch-point density to quantify the effects of TTBI. These metrics result from a point-source beacon being backpropagated from the target plane to the source plane through the simulated turbulence and TDTB. Overall, the results show that the log-amplitude variance and branch-point density increase significantly due to TTBI. This outcome poses a major problem for beam-control systems that perform phase compensation.