Filter Bank Fusion Frames

Document Type


Publication Date



In this paper we characterize and construct novel oversampled filter banks implementing fusion frames. A fusion frame is a sequence of orthogonal projection operators whose sum can be inverted in a numerically stable way. When properly designed, fusion frames can provide redundant encodings of signals which are optimally robust against certain types of noise and erasures. However, up to this point, few implementable constructions of such frames were known; we show how to construct them using oversampled filter banks. In this work, we first provide polyphase domain characterizations of filter bank fusion frames. We then use these characterizations to construct filter bank fusion frame versions of discrete wavelet and Gabor transforms, emphasizing those specific finite impulse response filters whose frequency responses are well-behaved.


The "Link to Full Text" button on this page loads the open access e-print version of the article at arXiv:1005.2949 [cs.IT].
Date of arXiv submission: 17 May 2010.

The publisher's digital version of record for this article is hosted at IEEEXplore as a subscription-access article. A citation is noted below.

Reviewed at MR2797710



Source Publication

IEEE Transactions on Signal Processing