Microstructural Modeling of Dual Phase Steel Using a Higher-Order Gradient Plasticity-Damage Model

Document Type


Publication Date



This paper focuses on the application of a higher-order gradient-dependent plasticity–damage model for microstructural modeling of dual-phase (DP) steels. Damage evolution is governed by the evolution of a nonlocal plasticity measure which is a function of the local equivalent plastic strain rate and its corresponding first-order gradient. Different two-dimensional representative volume elements of the DP microstructure are virtually generated by varying the martensite phase volume fraction, distribution, and size, and volume fraction and size of dispersed hard inclusions. It is shown that the employed modeling framework is capable of addressing three main issues that are not considered by the current studies on microstructural modeling of advanced high strength steels (AHSS); finite element mesh-dependency, size effects, and additional hardening due to plastic strain gradients. It is concluded that based on the employed mechanical properties of each phase in the DP steel, strength and ductility is governed by damage evolution and not necessarily by plastic strain localization alone. Therefore, it is shown that including nonlocal damage evolution is critical for accurate prediction of the strength and ductility of DP steels. It is also shown that dispersing 5% volume fraction of hard inclusions in the DP steel optimizes both strength and ductility such that a new generation of AHSS might be attained. Abstract © Elsevier.


The "Link to Full Text" button on this page loads the open access article version of record, hosted at Elsevier. The publisher retains permissions to re-use and distribute this article.

Source Publication

International Journal of Solids and Structures