Document Type


Publication Date



Waste-to-Energy technologies have the potential to dramatically improve both the natural and human environment. One type of waste-to-energy technology that has been successful is gasification. There are numerous types of gasification processes and in order to drive understanding and the optimization of these systems, traditional approaches like computational fluid dynamics software have been utilized to model these systems. The modern advent of machine learning models has allowed for accurate and computationally efficient predictions for gasification systems that are informed by numerous experimental and numerical solutions. Two types of machine learning models that have been widely used to solve for quantitative variables that are of predictive interest in gasification systems are gradient boosted machines and artificial neural networks. In this article, the reviewed literature used either gradient boosted machines or artificial neural networks to successfully model gasification systems. The review of such literature allows for a comparison in machine learning model architecture and resultant accuracy as well as an insight into what parameters are being used to inform the models and to make predictions.


© 2022 The Authors

This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.



Source Publication

Journal of Energy and Power Technology