Document Type


Publication Date



Temperature- (T-) and laser power-dependent photoluminescence (PL) measurements have been made for the tensile-strained, undoped GeSn (0.03% Sn) film grown on Si substrate. The PL results show not only clear strain-split direct bandgap transitions to the light-hole (LH) and heavy-hole (HH) bands at energies of 0.827 and 0.851 eV at 10 K, respectively, but also clearly show both strong direct and indirect bandgap related PL emissions at almost all temperatures, which are rarely observed. This split of PL emissions can be directly observed only at low T and moderate laser power, and the two PL peaks merge into one broad PL peak at room temperature, which is mainly due to the HH PL emission rather than LH transition. The evolution of T-dependent PL results also clearly show the competitive nature between the direct and indirect bandgap related PL transitions as T changes. The PL analysis also indicates that the energy gap reduction in Γ valley could be larger, whereas the bandgap reduction in L valley could be smaller than the theory predicted. As a result, the separation energy between Γ and L valleys (∼86 meV at 300 K) is smaller than theory predicted (125 meV) for this Ge-like sample, which is mainly due to the tensile strain. This finding strongly suggests that the indirect-to-direct bandgap transition of Ge1−ySny could be achieved at much lower Sn concentration than originally anticipated if one utilizes the tensile strain properly. Thus, Ge1−ySny alloys could be attractive materials for the fabrication of direct bandgap Si-based light emitting devices.


© 2014 AIP Publishing LLC, published under an exclusive license with American Institute of Physics.

AFIT Scholar, as the repository of the Air Force Institute of Technology, furnishes the published Version of Record for this article in accordance with the sharing policy of the publisher, AIP Publishing. A 12-month embargo was observed.

This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Journal of Applied Physics 116 (10): 103502. as fully cited below and may be found at DOI: 10.1063/1.4894870.

Source Publication

Journal of Applied Physics