Document Type

Article

Publication Date

10-27-2008

Abstract

Constitutive parameters for simplified cylindrical cloaks have been developed such that εzµθ and εzµr match those of the ideal cylindrical cloak. Although they are not perfect, simplified cylindrical cloaks have been shown to inherit many of the power-bending properties of the ideal cloak. However, energy is transmitted into simplified cloaks' hidden regions. Here, we develop a constraint equation that can be used to determine how closely field behavior within the simplified cylindrical cloak matches that of the ideal cloak. The deviation from this controlling equation can be reduced by controlling the cloak's parameter value, μθ As the deviation from our constraint equation is decreased, the field transmitted into the cloak's hidden region is reduced, resulting in less energy impinging on the cloaked object. This results in a smaller scattered field due to the presence of the cloaked object. However, the resulting impedance mismatch at r = b results in a significant scattered field by the cloak itself. Thus, we have found when using cylindrical cloaks that satisfy the ideal values of εzµθ and εzµr for scattering width reduction, it is more important to have a matched impedance at r = b than to have a smaller field transmitted into the cloak's hidden region. However, such cloaks' scattering widths can vary significantly as a function of the object in the hidden region. A cloak with a matched impedance at r = b and that satisfies specific values for εzµθ and μ′θ performs reasonably well in terms of scattering width reduction in certain angular regions while being independent of the object in the hidden region. © 2008 Optical Society of America.

Comments

© 2008 Optical Society of America. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for non-commercial purposes and appropriate attribution is maintained. All other rights are reserved.

Published under the terms of the under the terms of the OSA Open Access Publishing Agreement and OSA's open access policies.

Sourced from the published version of record cited below.

DOI

10.1364/OE.16.017560

Source Publication

Optics Express

Included in

Optics Commons

Share

COinS