Date of Award

3-21-2013

Document Type

Thesis

Degree Name

Master of Science

Department

Department of Electrical and Computer Engineering

First Advisor

Gilbert L. Peterson, PhD.

Abstract

Biometric computer authentication has an advantage over password and access card authentication in that it is based on something you are, which is not easily copied or stolen. One way of performing biometric computer authentication is to use behavioral tendencies associated with how a user interacts with the computer. However, behavioral biometric authentication accuracy rates are much larger then more traditional authentication methods. This thesis presents a behavioral biometric system that fuses user data from keyboard, mouse, and Graphical User Interface (GUI) interactions. Combining the modalities results in a more accurate authentication decision based on a broader view of the user's computer activity while requiring less user interaction to train the system than previous work. Testing over 30 users, shows that fusion techniques significantly improve behavioral biometric authentication accuracy over single modalities on their own. Two fusion techniques are presented, feature fusion and decision level fusion. Using an ensemble based classification method the decision level fusion technique improves the FAR by 0.86% and FRR by 2.98% over the best individual modality.

AFIT Designator

AFIT-ENG-13-M-04

DTIC Accession Number

ADA579519

Share

COinS