Date of Award

9-14-2017

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Department of Electrical and Computer Engineering

First Advisor

Gilbert L. Peterson, PhD.

Abstract

Bugs in software that make it through testing can cost tens of millions of dollars each year, and in some cases can even result in the loss of human life. In order to eliminate bugs, developers may use symbolic execution to search through possible program states looking for anomalous states. Most of the computational effort to search through these states is spent solving path constraints in order to determine the feasibility of entering each state. State merging can make this search more efficient by combining program states, allowing multiple execution paths to be analyzed at the same time. However, a merge with dissimilar path constraints dramatically increases the time necessary to solve the path constraint. Currently, there are no distance measures for path constraints, and pairwise comparison of program states is not scalable. A hashing method is presented that clusters constraints in such a way that similar constraints are placed in the same cluster without requiring pairwise comparisons between queries. When combined with other state-of-the-art state merging techniques, the hashing method allows the symbolic executor to execute more instructions per second and find more terminal execution states than the other techniques alone, without decreasing the high path coverage achieved by merging many states together.

AFIT Designator

AFIT-ENG-DS-17-S-005

DTIC Accession Number

AD1042916

Share

COinS