Date of Award
7-1993
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Department of Electrical and Computer Engineering
First Advisor
Peter S. Maybeck, PhD
Abstract
This research addresses methods for exploiting the joint likelihood of observed kinematic and nonkinematic (sensor signature) physical events to improve dynamic object and target recognition. A principal direction is the application of dynamic programming sequence comparison techniques to condition matching of object signatures to known models according to observed kinematics. A second direction is the application of kinematic/aspect-angle Kalman filter trackers to condition kinematic tracking according to observed signatures. These conditioning processes dramatically reduce ambiguity in object recognition, and can be used together or separately to allow computation of a posterior probabilities of object class membership using Bayesian methods. Proposals are supported by simulated target tracking and high range resolution radar target recognition. Original contributions of this effort include: (1) new approaches for and theoretical understanding of syntactic methods in multisensor fusion and dynamic object recognition; and (2) extension of estimation and tracking techniques to allow object recognition and establish performance bounds for recognition.
AFIT Designator
AFIT-DS-ENG-93-05
DTIC Accession Number
ADA267623
Recommended Citation
Libby, Edmund W., "Application of Sequence Comparison Methods to Multisensor Data Fusion and Target Recognition" (1993). Theses and Dissertations. 6876.
https://scholar.afit.edu/etd/6876
Comments
The author's Vita page is omitted.
Page 3-27 of this dissertation is the author-corrected version of that page, as sent to DTIC in October 1995.