Date of Award

9-1994

Document Type

Thesis

Degree Name

Master of Science

Department

Department of Systems Engineering and Management

First Advisor

Michael L. Shelley, PhD

Abstract

This research evaluated the process of intrinsic bioremediation, also called natural attenuation, and the parameters that affected it. The goal of this study was to use these intrinsic bioremediation parameters to develop a valid prediction of the cleanup duration using this restoration technology. This analysis was limited to a JP-4 release and focused on the remediation of the BTEX constituents to a cleanup level of 10 ppm total BTEX. The review of intrinsic bioremediation found that the BTEX hydrocarbons can aerobically and anaerobically biodegrade. Of the many factors that affect intrinsic bioremediation, those that most influenced its occurrence were the quantities of aerobic and anaerobic electron acceptors used in biodegradation. The electron acceptors considered in this research were oxygen, nitrate, manganese (IV), iron (III), and sulfate. A no-dispersion biodegradation model was developed to determine the prediction of the intrinsic bioremediation duration based on the concentrations of individual electron acceptors. Only the aerobic electron acceptor had a measurable influence on the biodegradation model; hence, the prediction results focused on the aerobic biodegradation and its boundary with the anaerobic portion. The key factors used to characterize this boundary and its movement was the initial quantities of BTEX, dissolved oxygen and the relative velocity of the ground water moving through the retarded plume. A linear regression was performed to relate the three parameters mentioned above to the motion of the aerobic boundary.

AFIT Designator

AFIT-GEE-ENV-94S-08

DTIC Accession Number

ADA284827

Comments

The author's Vita page is omitted.

Share

COinS