Date of Award
12-1998
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Department of Operational Sciences
First Advisor
Kenneth W. Bauer, Jr. PhD
Abstract
This dissertation research extends the current knowledge of feature saliency in artificial neural networks (ANN). Feature saliency measures allow for the user to rank order the features based upon the saliency, or relative importance, of the features. Selecting a parsimonious set of salient input features is crucial to the success of any ANN model. In this research, several methodologies were developed using the Signal to Noise Ratio (SNR) Feature Screening Method and its associated SNR Saliency Measure for selecting a parsimonious set of salient features to classify pilot workload in addition to air traffic controller workload. Candidate features were derived from electroencephalography (EEG), electrocardiography (EKG), electro-oculography (EOG), and respiratory gauges. In addition, a new saliency measure was developed that can account for time in Elman Recurrent Neural Networks (RNN). This Partial Derivative Based Spatial Temporal Saliency Measure is used via a Spatial Temporal Feature Screening Method for selecting a parsimonious set of salient features in both time and space. Finally, a technique for investigating the memory capacity of an Elman RNN was developed.
AFIT Designator
AFIT-DS-ENS-98-02
DTIC Accession Number
ADA358600
Recommended Citation
Greene, Kelly A., "Feature Saliency in Artificial Neural Networks with Application to Modeling Workload" (1998). Theses and Dissertations. 5118.
https://scholar.afit.edu/etd/5118
Comments
The author's Vita page is removed.