Date of Award
3-2000
Document Type
Thesis
Degree Name
Master of Science
Department
Department of Aeronautics and Astronautics
First Advisor
Gregory S. Agnes, PhD
Abstract
Aircraft engine blades are subject to harmonic forcing produced from periodic wakes created by fixed stators. Prolong or repeated exposure at blade resonant frequencies can cause vibration-induced fatigue, otherwise known as High Cycle Fatigue (HCF). Structural mistuning coupled with HCF causes premature blade failures, excessive operational costs and increased engine servicing. This study offered a novel approach to characterize mistuning effects on bladed disk forced vibration behavior. A model fan reduced in dynamic scale from an operational jet engine fan and with weak inter-blade coupling was fabricated. Aerodynamic disturbances produced by the stators were replicated by magnets attached to a rotating flywheel interacting with similar magnets epoxied to the model fan blades. Magnet configurations mimicked engine order. Accelerometers transducers at blade tips measured forced vibration loads. Transducer response signals were analyzed by a data acquisition system. The flywheel excitation system performed very well in its ability to impart periodic forcing onto the bladed disk. The harmonic forcing input was characterized and capable of producing a wide assortment of forced vibration results. Mistuning and engine order primarily effected system response, specifically in the areas of localization levels, individual blade response profiles, number of maximum blade amplitude peaks and localization frequency range.
AFIT Designator
AFIT-GAE-ENY-00M-05
DTIC Accession Number
ADA380221
Recommended Citation
Duffield, Colin J., "An Experimental Investigation on Periodic Forced Vibrations of a Bladed Disk" (2000). Theses and Dissertations. 4776.
https://scholar.afit.edu/etd/4776
Comments
The author's Vita page was omitted.