Date of Award
8-2002
Document Type
Thesis
Degree Name
Master of Science
Department
Department of Electrical and Computer Engineering
First Advisor
Richard A. Raines, PhD
Abstract
In the rapidly changing environment of mobile communications, the importance of the mobile satellite (e,g,, low earth orbit satellites (LEOsats)) networks will increase due to their global visibility and connection. Multicasting is an effective communication method in terms of frequency spectrum usage for a LEO network. It is devised to provide lower network traffic (i,e,, one-to-many transmissions). This research examines the system performance of two dissimilar terrestrially-based multicasting protocols: the Distance Vector Multicast Routing Protocol (DVMRP) and the On Demand Multicast Routing Protocol (ODMRP). These two protocols are simulated in large group membership density and in the presence of satellite failures. Two different algorithms are developed and used to select critical satellites for degrading a LEO network constellation. The simulation results show that the ODMRP protocol successfully reconfigured routes in large group membership density areas and in satellite failure conditions. Results also show that the ODMRP provided reliable packet delivery. However, ODMRP showed an enormous end-to-end delay in severe satellite failure conditions. This result is attributable to the delayed route refreshing procedure of ODMRP. In contrast, the DVMRP suffered from broken routes and complexity in the large group membership density and in satellite failure conditions. It had a smaller packet delivery ratio than the ODMRP (approximately 85,5% versus 98,9% for the 80 user case). The DVMRP showed scalable and stable end-to-end delay under multiple failed satellite conditions. The large group membership density and the multiple satellite failure conditions provide a more complete assessment for these two protocols.
AFIT Designator
AFIT-GE-ENG-02-34
DTIC Accession Number
ADA412964
Recommended Citation
Lee, Jae Soong, "Multicast Routing Algorithms and Failure Analyses for Low Earth Orbit Satellite Communication Networks" (2002). Theses and Dissertations. 4443.
https://scholar.afit.edu/etd/4443