Date of Award
3-2004
Document Type
Thesis
Degree Name
Master of Science in Electrical Engineering
Department
Department of Electrical and Computer Engineering
First Advisor
Paul E. Kladitis, PhD
Abstract
Microelectromechanical systems (MEMS) radio frequency (RF) switches have been shown to have excellent electrical performance over a wide range of frequencies. However, cost-effective packaging techniques for MEMS switches do not currently exist. This thesis involves the design of RF-optimized encapsulations consisting of dielectric and metal layers, and the creation of a novel thin film encapsulation process to fabricate the encapsulations. The RF performance of several encapsulation designs are evaluated with an analytical model, full wave electromagnetic simulation, and laboratory testing. Performance degradation due to parasitic and reflection losses due to the package is considered, and RF feed-throughs of the transmission line into and out of the package are designed and assessed. Ten different encapsulation designs were created and their RF performance was characterized in terms of insertion loss, return loss, and isolation. A switch without an encapsulation and a switch with a dielectric encapsulation were fabricated and tested by the Air Force Research Laboratory (AFRL), and the test data was used to verify the data from analytical modeling and electromagnetic simulation performed in this work. All results were used to design an optimized encapsulation. An RF MEMS switch with this encapsulation was shown to have an overall insertion loss of less than -0.15 dB at 20 GHz compared to an unencapsulated switch insertion loss of about -0.1 dB. The isolation of the switch was slightly improved with the encapsulation. The fabrication process proposed to manufacture these encapsulations uses a low temperature solder as the metal encapsulation layer. As the final step in the fabrication, the solder is brought to melting temperature and reflowed over the etch holes to form a hermetic encapsulation.
AFIT Designator
AFIT-GE-ENG-04-16
DTIC Accession Number
ADA426473
Recommended Citation
Marsh, Eric D., "Thin Film Encapsulation of Radio Frequency (RF) Microelectromechanical Systems (MEMS) Switches" (2004). Theses and Dissertations. 4045.
https://scholar.afit.edu/etd/4045