Date of Award

9-2004

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Department of Operational Sciences

First Advisor

James W. Chrissis, PhD

Abstract

A new class of algorithms is introduced and analyzed for bound and linearly constrained optimization problems with stochastic objective functions and a mixture of design variable types. The generalized pattern search (GPS) class of algorithms is extended to a new problem setting in which objective function evaluations require sampling from a model of a stochastic system. The approach combines GPS with ranking and selection (R&S) statistical procedures to select new iterates. The derivative-free algorithms require only black-box simulation responses and are applicable over domains with mixed variables (continuous, discrete numeric, and discrete categorical) to include bound and linear constraints on the continuous variables. A convergence analysis for the general class of algorithms establishes almost sure convergence of an iteration subsequence to stationary points appropriately defined in the mixed-variable domain. Additionally, specific algorithm instances are implemented that provide computational enhancements to the basic algorithm. Implementation alternatives include the use modern R&S procedures designed to provide efficient sampling strategies and the use of surrogate functions that augment the search by approximating the unknown objective function with nonparametric response surfaces. In a computational evaluation, six variants of the algorithm are tested along with four competing methods on 26 standardized test problems. The numerical results validate the use of advanced implementations as a means to improve algorithm performance.

AFIT Designator

AFIT-DS-ENS-04-02

DTIC Accession Number

ADA428096

Share

COinS